资源类型

期刊论文 839

年份

2024 1

2023 57

2022 85

2021 58

2020 53

2019 68

2018 29

2017 27

2016 35

2015 21

2014 48

2013 46

2012 28

2011 33

2010 37

2009 51

2008 38

2007 29

2006 11

2005 13

展开 ︾

关键词

混凝土 16

三峡工程 9

三峡升船机 5

钢箱梁 4

TRIP钢 3

三塔悬索桥 3

力学性能 3

升船机 3

混凝土面板堆石坝 3

PP 2

三点弯曲梁 2

优化 2

低成本 2

关键技术 2

创新 2

发展 2

复合材料 2

悬索桥 2

整体沉放 2

展开 ︾

检索范围:

排序: 展示方式:

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 744-761 doi: 10.1007/s11709-022-0843-z

摘要: Improving the cracking resistance of steel-normal concrete (NC) composite beams in the negative moment region is one of the main tasks in designing continuous composite beam (CCB) bridges due to the low tensile strength of the NC deck at pier supports. This study proposed an innovative structural configuration for the negative bending moment region in a steel-concrete CCB bridge with the aid of ultrahigh performance concrete (UHPC) layer. In order to investigate the feasibility and effectiveness of this new UHPC jointed structure in the negative bending moment region, field load testing was conducted on a newly built full-scale bridge. The newly designed structural configuration was described in detail regarding the structural characteristics (cracking resistance, economy, durability, and constructability). In the field investigation, strains on the surface of the concrete bridge deck, rebar, and steel beam in the negative bending moment region, as well as mid-span deflection, were measured under different load cases. Also, a finite element model for the four-span superstructure of the full-scale bridge was established and validated by the field test results. The simulated results in terms of strains and mid-span deflection showed moderate consistency with the test results. This field test and the finite element model results demonstrated that the new configuration with the UHPC layer provided an effective alternative for the negative bending moment region of the composite beam.

关键词: field test     steel-concrete composite beam     continuous girder bridge     negative bending moment region     ultrahigh performance concrete    

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 1-14 doi: 10.1007/s11709-019-0514-x

摘要:

In view of China’s development trend of green building and building industrialization, based on the emerging requirements of the structural engineering community, the development and proposition of novel resource-saving high-performance steel-concrete composite structural systems with adequate safety and durability has become a kernel development trend in structural engineering. This paper provides a state of the art review of China’s cutting-edge research and technologies in steel-concrete composite structures in recent years, including the building engineering, the bridge engineering and the special engineering. This paper summarizes the technical principles and applications of the long-span bi-directional composite structures, the long-span composite transfer structures, the comprehensive crack control technique based on uplift-restricted and slip-permitted (URSP) connectors, the steel plate concrete composite (SPCC) strengthen technique, and the innovative composite joints. By improving and revising traditional structure types, the comprehensive superiority of steel-concrete composite structures is well elicited. The research results also indicate that the high-performance steel-concrete composite structures have a promising popularizing prospect in the future.

关键词: high-performance composite structure     bi-directional composite     composite transfer     uplift-restricted and slip-permitted connectors     steel plate concrete composite strengthen    

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1336-1350 doi: 10.1007/s11709-022-0852-y

摘要: An innovative composite deck system has recently been proposed for improved structural performance. To study the fatigue behavior of a steel-concrete composite bridge deck, we took a newly-constructed rail-cum-road steel truss bridge as a case study. The transverse stress history of the bridge deck near the main truss under the action of a standard fatigue vehicle was calculated using finite element analysis. Due to the fact that fatigue provision remains unavailable in the governing code of highway concrete bridges in China, a preliminary fatigue evaluation was conducted according to the fib Model Code. The results indicate that flexural failure of the bridge deck in the transverse negative bending moment region is the controlling fatigue failure mode. The fatigue life associated with the fatigue fracture of steel reinforcement is 56 years. However, while the top surface of the bridge deck concrete near the truss cracks after just six years, the bridge deck performs with fatigue cracks during most of its design service life. Although fatigue capacity is acceptable under design situations, overloading or understrength may increase its risk of failure. The method presented in this work can be applied to similar bridges for preliminary fatigue assessment.

关键词: Fatigue assessment     composite bridge deck     rail-cum-road bridge     fatigue stress analysis     Model Code    

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 278-293 doi: 10.1007/s11709-011-0120-z

摘要: This paper presents the design guide based on analytical, numerical and experimental investigation of Steel-concrete-steel (SCS) sandwich structural members comprising a lightweight concrete core with density ranged from 1300 to 1445 kg/m subjected to static, impact and blast loads. The performance of lightweight sandwich members is also compared with similar members with normal weight concrete core and ultra high strength concrete core ( = 180 MPa). Novel J-hook shear connectors were invented to prevent the separation of face plates from the concrete core under extreme loads and their uses are not restricted by the concrete core thickness. Flexural and punching are the primary modes of failure under static point load. Impact test results show that the SCS sandwich panels with the J-hook connectors are capable of resisting impact load with less damage in comparison than equivalent stiffened steel plate panels. Blast tests with 100 kg TNT were performed on SCS sandwich specimens to investigate the key parameters that affect the blast resistance of SCS sandwich structure. Plastic yield line method is proposed to predict the plastic capacity and post peak large deflection of the sandwich plates. Finally, an energy balanced model is developed to analyze the global behavior of SCS sandwich panels subjected to dynamic load.

关键词: blast load     composite structure     impact load     lightweight concrete     sandwich plate     J-hook connector    

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concretecomposite beam

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 704-721 doi: 10.1007/s11709-023-0941-6

摘要: In this study, the flexural and longitudinal shear performances of two types of precast lightweight steel–ultra-high performance concrete (UHPC) composite beams are investigated, where a cluster UHPC slab (CUS) and a normal UHPC slab (NUS) are connected to a steel beam using headed studs through discontinuous shear pockets and full-length shear pockets, respectively. Results show that the longitudinal shear force of the CUS is greater than that of the NUS, whereas the interfacial slip of the former is smaller. Owing to its better integrity, the CUS exhibits greater flexural stiffness and a higher ultimate bearing capacity than the NUS. To further optimize the design parameters of the CUS, a parametric study is conducted to investigate their effects on the flexural and longitudinal shear performances. The square shear pocket is shown to be more applicable for the CUS, as the optimal spacing between two shear pockets is 650 mm. Moreover, a design method for transverse reinforcement is proposed; the transverse reinforcement is used to withstand the splitting force caused by studs in the shear pocket and prevent the UHPC slab from cracking. According to calculation results, the transverse reinforcement can be canceled when the compressive strength of UHPC is 150 MPa and the volume fraction of steel fiber exceeds 2.0%.

关键词: precast steel–UHPC composite beam     flexural performance     longitudinal shear performance     parametric study     transverse reinforcement ratio    

钢箱-混凝土组合梁正截面强度设计理论与试验研究

钟新谷,舒小娟,沈明燕,莫时旭,谢文

《中国工程科学》 2008年 第10卷 第10期   页码 47-53

摘要:

基于钢箱-混凝土组合梁的基本特性,提出了正截面强度设计理论,并分析梁宽厚比、混凝土套箍效应对正截面强度的影响,提出了该类组合截面的合理尺寸选择原则,分析表明钢箱-混凝土组合梁较空箱的承载力有明显提高,其受力性能明显改善。同时进行3根大比例钢箱-混凝土组合梁的模型试验研究,试验研究表明:钢箱-混凝土组合梁具有良好的抗弯性能和延性,极限承载力提高显著。钢箱-混凝土组合梁通过进一步的试验与理论研究有广泛的应用前景。

关键词: 钢箱-混凝土组合梁     设计理论     试验研究    

Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 333-344 doi: 10.1007/s11709-016-0357-7

摘要: This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Through the low-frequency cyclic loading test, the cyclic behavior and failure mode of the specimen were investigated. The results of the test indicated the failure mode and bearing capacity of the specimen which were influenced by the axial compression ratio of the concrete-filled tubular column. On the contrary, the inner diaphragm and inner stiffeners had limited impacts on the hysteretic behavior of the joint. There was no hysteresis damage fracture on the narrow outer diaphragm connected to the concrete-filled steel tubular column with partial joint penetration welds. Due to the excellent ductility and energy dissipating capacity, the proposed joint could be applied to the seismic design of high-rise buildings in highly intensive seismic region, but axial compression ratio should be controlled to avoid unfavorable failure modes.

关键词: narrow outer diaphragm     concrete-filled tubular column     joint     inner and outer stiffening     cyclic behavior    

Nonlinear experimental response of non-conventional composite steel and concrete connection

Tobia ZORDAN, Bruno BRISEGHELLA

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 42-49 doi: 10.1007/s11709-008-0058-y

摘要: An experiment was carried out on a set of full-scale specimens of a non-conventional connection between a concrete column and a composite steel and concrete beam defined on the basis of a number of requirements. The proposed connection, conceived in the ambit of semi-rigid joints, is aimed at combining general ease of construction with a highly simplified assembly procedure with a satisfying transmission of hogging moment at supports in continuous beams. For this purpose, the traditional shear studs used at the interface between the steel beam and the upper concrete slab, are also employed at the ends of the steel profiles welded horizontally to the end plates. The test is aimed at investigating the hogging moment response of the connection under incremental loads until failure.

关键词: composite connections     nonlinear behaviour     hogging moment     monotonic tests    

Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube

Abdelmadjid SI SALEM,Souad AIT TALEB,Kamal AIT TAHAR

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 154-162 doi: 10.1007/s11709-015-0296-8

摘要: A new concrete-composite beam with high mechanical performances to weight ratio is developed in this study. The proposed design technique consists to embed a cylindrical polymer tube wrapped by a GFRP Jacket in the mechanically ineffective concrete tensile zone. An experimental investigation is carried out on composite beams under bending loads until failure to evaluate the flexural capacity and the corresponding failure mechanisms. Based on the experimental results, statistical and preliminary reliability analyses using the FORM method are performed to assess the safety margin of the new beam. The confrontation between test and simulation results shows a satisfactory agreement, and represents a promising revelation regarding the improvement in terms of strength and ductility of such design compared to conventional reinforced concrete beams with traditional one.

关键词: design     GFRP-Jacket     polymer tube     test     reliability analysis    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

Trial design of arch bridge of composite box section with steel web-concrete flange

Jiangang WEI, Qingwei HUANG, Baochun CHEN,

《结构与土木工程前沿(英文)》 2010年 第4卷 第3期   页码 370-375 doi: 10.1007/s11709-010-0073-7

摘要: The concrete arch bridge is a natural and appropriate structural solution, aesthetically pleasing and easily integrated into the environment, especially in mountainous and island areas. However, construction difficulty and cost will increase with heavy self-weight when the span enlarges. A potential solution is to use a composite box arch ring with steel web-concrete flange. Taking Wanzhou Yangtze River Bridge (the longest concrete arch bridge in the world with a main span of 420 m) as a prototype, trial designs of a composite box arch with steel webs (including corrugated steel webs and plain steel webs) and concrete flanges were carried out. Comparison of quantities and structural behaviors of the prototype concrete arch with the two trial designed composite arch was presented. It is shown that the self-weight of the composite arch can reduce about 28% and the structures can meet the design requirements, therefore it is possible to use the two composite arches in long span arch bridges.

关键词: steel webs     concrete     box arch     trial design     structural behaviors     finite element method    

步行激励下大跨度钢-混凝土空心板组合梁振动舒适度研究 Article

刘界鹏, 黄鉥, 李江, Y. Frank Chen

《工程(英文)》 2022年 第19卷 第12期   页码 93-104 doi: 10.1016/j.eng.2021.04.025

摘要:

大跨度预制钢-混凝土空心板组合梁(CBHCS)是一种新型的楼板结构,可用于各种大跨度结构。然而,人为引起的振动会对此类结构的使用产生影响。为了减轻振动,需要探究由人引起的步行力与楼板状态之间的关系。本文首先使用测力板获取了25 名测试者的150 个步行力,确定了单步行走的傅里叶级数中的动态载荷系数和相位角。其次,对7 个CBHCS试样进行了行走测试,获取了模态振型、固有频率、阻尼比和加速度等基本动态特性。CBHCS楼板系统通常表现出高频(>10 Hz)和低阻尼(阻尼比低于2%)的特性。本文还使用有限元方法进行了灵敏度研究,以研究CBHCS楼板系统的振动性能,考虑了楼板厚度、
钢梁类型、接触时间和人体重量。最后,本文推导了基频和峰值加速度的解析表达式,与实验结果吻合较好,具有实际的应用价值。

关键词: 组合梁     空心板     步行力     楼板振动     模态振型    

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 364-377 doi: 10.1007/s11709-021-0702-3

摘要: In this study, a fully precast steel–ultrahigh performance concrete (UHPC) lightweight composite bridge (LWCB) was proposed based on Mapu Bridge, aiming at accelerating construction in bridge engineering. Cast-in-place joints are generally the controlling factor of segmental structures. Therefore, an innovative girder-to-girder joint that is suitable for LWCB was developed. A specimen consisting of two prefabricated steel–UHPC composite girder parts and one post-cast joint part was fabricated to determine if the joint can effectively transfer load between girders. The flexural behavior of the specimen under a negative bending moment was explored. Finite element analyses of Mapu Bridge showed that the nominal stress of critical sections could meet the required stress, indicating that the design is reasonable. The fatigue performance of the UHPC deck was assessed based on past research, and results revealed that the fatigue performance could meet the design requirements. Based on the test results, a crack width prediction method for the joint interface, a simplified calculation method for the design moment, and a deflection calculation method for the steel–UHPC composite girder in consideration of the UHPC tensile stiffness effect were presented. Good agreements were achieved between the predicted values and test results.

关键词: accelerated bridge construction     ultrahigh-performance concrete     steel–UHPC composite bridge     UHPC girder-to-girder joint    

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Modelling and experimental verification on concrete-filled steel tubular columns with L or T section

LU Xilin, LI Xueping, WANG Dan

《结构与土木工程前沿(英文)》 2007年 第1卷 第2期   页码 163-169 doi: 10.1007/s11709-007-0017-z

摘要: Concrete-filled steel tubular columns with L or T sections were analyzed in this paper. According to the confining mechanism, the stress-strain constitutive model was put forward, and calculated results were compared with experimental records. After that, the hysteretic rules for the in-filled concrete were constructed, aiming at the analysis on the seismic behavior of composite members. The simulation analysis was performed by programming it in Fortran. The models in this paper can be applied in the program of time history analysis on tall buildings with concrete-filled steel tubular columns with L or T sections.

关键词: hysteretic     confining mechanism     Concrete-filled     in-filled     composite    

标题 作者 时间 类型 操作

Field validation of UHPC layer in negative moment region of steel-concrete composite continuous girder

Minghong QIU; Xudong SHAO; Weiye HU; Yanping ZHU; Husam H. HUSSEIN; Yaobei HE; Qiongwei LIU

期刊论文

Technological development and engineering applications of novel steel-concrete composite structures

Jianguo NIE, Jiaji WANG, Shuangke GOU, Yaoyu ZHU, Jiansheng FAN

期刊论文

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

期刊论文

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

期刊论文

Flexural and longitudinal shear performance of precast lightweight steel–ultra-high performance concretecomposite beam

期刊论文

钢箱-混凝土组合梁正截面强度设计理论与试验研究

钟新谷,舒小娟,沈明燕,莫时旭,谢文

期刊论文

Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

期刊论文

Nonlinear experimental response of non-conventional composite steel and concrete connection

Tobia ZORDAN, Bruno BRISEGHELLA

期刊论文

Experimental and statistical investigation of a new concrete-composite beam with encased polymer tube

Abdelmadjid SI SALEM,Souad AIT TALEB,Kamal AIT TAHAR

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

Trial design of arch bridge of composite box section with steel web-concrete flange

Jiangang WEI, Qingwei HUANG, Baochun CHEN,

期刊论文

步行激励下大跨度钢-混凝土空心板组合梁振动舒适度研究

刘界鹏, 黄鉥, 李江, Y. Frank Chen

期刊论文

Precast steel–UHPC lightweight composite bridge for accelerated bridge construction

Shuwen DENG, Xudong SHAO, Xudong ZHAO, Yang WANG, Yan WANG

期刊论文

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Modelling and experimental verification on concrete-filled steel tubular columns with L or T section

LU Xilin, LI Xueping, WANG Dan

期刊论文